
Scheme in Industrial Automation

[Extended Abstract]

Marco Benelli
mbenelli@yahoo.com

ABSTRACT
This paper provides a description of a success story in using
Scheme in a production environment, in the field of indus-
trial automation. It describes the migration of an applica-
tion based on legacy technologies such as Java applets and
CGIs written in C, to a modern web application, through
a set of smooth steps that have incrementally improved the
product and the workflow. The components that have al-
lowed this improvement are a set of declarative languages for
configuration and customizations and a web framework. The
Scheme implementation Gambit-C has showed itself to be
well suited for the development of these components, thanks
to the Scheme’s nature and Gambit’s own extensions.

Categories and Subject Descriptors
D.1.1 [Programming Techniques]: Applicative (Func-
tional) Programming; D.2.12 [Software Engineering]: In-
teroperability; H.3.5 [Information Storage and Retrieval]:
On-line Information Services

Keywords
Scheme, Gambit, functional programming, domain specific
languages, web

1. INTRODUCTION
The limited resources typically found in Supervisory Con-
trol And Data Acquisition (SCADA) systems seem to be an
obstacle to the development of modern web-based Human
Machine Interfaces.

Since it is well known that ”Hardware is Cheap, Program-
mers are Expensive”, most manufacturers choose to upgrade
the hardware and rely on most common tools such as Java,
.net, Php, Python, Ruby for web development. Neverthe-
less, the cost is not the only drawback of a hardware up-
grade but also space and power consumption are important
factors. Furthermore, in mass production, even the slightest
upgrade can push up the price of production.

This paper describes the evolution of a SCADA system to a
more effective and flexible one. This process did not required
any hardware upgrade, rather it has been ported also on
cheaper hardware.

2. REQUIREMENTS
The starting point was a system that already has a web
interface. The more interactive parts of the interface (data
plotting and plant synopsis) were Java applets. The rest of
the application was powered by CGIs (written in C) that
handled data retrieval and session management.

The system was developed for an ARM-powered board with
about 200 Mhz of cpu frequency and 128 MB of RAM, and
used for supervising wastewater plants, but it was intended
to be the base for more generic applications and to be ported
onto other architectures. The resulting system is actually
being used in wastewater plants, photovoltaic plants, cli-
matic chambers and refrigerators on ARM, x86 and SH-2
powered machines.

Figure 1 shows a typical configuration of the board con-
taining the supervisor and the Human Machine Interface,
while the data acquisition is delegated to one or more Pro-
grammable Logic Controllers (PLC). This image is for il-
lustrative purposes only, being the system used in several
different applications, but it contains all the relevant ele-
ments.

One important requirement was the ease of content creation
and customization by users without programming experi-
ence. Furthermore, some customers wanted the supervisor
on proprietary devices, therefore, in some situations, it was
not possible to install customized software. Thus, inducing
the programmers to use existing storage and communication
tools.

3. TOOLS
The first step was to remove interfaces based on Java ap-
plets.

These interfaces were generated with manual editing that
produce an XML configuration file for each Java applet.
This approach was problematic, the use of applets broke
the web paradigm, and required the presence of JRE on the
client machines. So it was decided to get rid of applets, and
adopt a more modern AJAX interface. Seeing that the task
was a source to source transformation, Lisp was the most

Figure 1: Components of a typical SCADA system

natural choice.

The second step was the definition of a language for building
and, especially, customizing application interface.

The third step was replacing the CGI layer with a more
flexible application.

Therefore a dynamic and high performance language was
required. Considering possible developments, and the abil-
ity to support other platforms, portability was a desirable
feature.

There are several Common Lisp and Scheme compilers that
have good performance and are portable.

Scheme was chosen because of its functional features [1],
valuable in XML traversing[2]; Gambit1 was chosen because
of its extensions like green threads, FFI, extended ports[3].
A lot of libraries are used: SRFIs2, SSAX3, irregex4; most of
which had already been ported and optimized for Gambit.
No module system like Snow5 or Black Hole6 were used.
The namespaces and separate compilation used by Gambit
satisfied our need. The macro system used is the Gambit
built-in define-macro (similar to Common Lisp’s defmacro).
The syntax-case expander was initially used. However the
overhead in size of object files was considered excessive for
being used on the supervisor board.

4. DOMAIN SPECIFIC LANGUAGES
The pages most frequently used were the synopsis applets.
They showed an image of the plant, with a clickable icon or
text field for each physical device (pumps, switches, sensors)
and a visual feedback of their state (disabled, on, off, alarm).
All the configurations were read from an XML file generated
by a proprietary editor, on the other hand runtime data were
retrieved from the database. This configuration is illustrated
in Figure 2a.

1http://www.iro.umontreal.ca/˜gambit/
2http://srfi.schemers.org
3http://ssax.sourceforge.net
4http://synthcode.com/scheme/irregex/
5http://snow.iro.umontreal.ca/
6https://github.com/pereckerdal/blackhole

Figure 2: Evolution of workflow

A source to source compiler was written in order to remove
Java applets. This compiler takes as an input the XML
generated by the editor, and produces a set of HTML, CSS
and JavaScripts files that create the same applet’s interface.
The language relies heavily on the use of SSAX-SXML. In
this way, it was possible to have a new interface without any
changes neither to the existing resources, or to the workflow
(Figure 2b). The compiler is based on SXML: an associa-
tion list maps directives (the XML tags) to functions that
generate an HTML node and/or JavaScript code.

Building the XML configuration for the synopsis required
the user to manually insert information about devices (type,
measure units, range). This workflow was slow and prone to
bug. To improve it, a new compiler was developed, that took
as input an HTML map (created with common graphical
editor such as Illustrator or Gimp) with the positions of the
items, and a CVS file built from a spreadsheet, containing
all the configurations of the devices. (Figure 2c).

This workflow proved to be effective and flexible enough to
handle all the requirements that emerged in new projects
(new devices, different visual feedbacks) with little or no
modification to the transformer.

A similar language was developed for creating applications
composed of only static HTML pages and AJAX communi-
cation. In Figure 3 there a couple of examples of usage. In
the example a page with a table that shows a list of alarms is
defined. The page directive builds the HTML page, and it is
followed by the title and a specifier (db in this example) that
gives indication of the type of page that is being built, insert-
ing in the page initialization all the needed JavaScript code.
Then dbtable defines a table giving it the id alarmTable

as an HTML attribute, and builds a table using the given

sql query and fields description. Data can automatically be
converted: in this example all enumerable values are showed
as icons.

The second example in Figure 3 shows a variation of this
language that was used in the development of web interface
on a system with a supervisor that had a proprietary sys-
tem for storing values. The page is a poll type, this means
that page asks periodically for the current values of all vari-
ables (Txxx or Txxx_x). In the JavaScript onload function,
there is a setInterval with the needed AJAX call. The
following box directive defines a div element with the given
id and class, to be referenced by scripts and style declara-
tions. It should be noted that it is possible to integrate SQL
and JavaScript code with the directives sql and js respec-
tively. Embedding SQL in client code is notoriously very
bad programming style, section 5 shows how this problem
was solved.

Some of the directives showed in these examples produce
directly html code, but there are also directives that are de-
fined in terms of other directives, like channel and toolbar

in the latter example. Composite directives were used also
for whole pages, which acted as a sort of template system.

Seeing that the directives are specified in an association list,
it is possible to build individual, task-specific lists that will
merge when needed, for example a list for database powered
widged, or for polling pages. Furthermore, since unrecog-
nized directives are translated as identity, regular HTML
tags can be used.

5. WEB SERVER AND APPLICATIONS
Given the constraints of the host machines, the web interface
was originally written as C CGIs. This strategy was proved
to be inflexible: basically the main CGI was an interface
to a database that returned query results to the client as
simple text. Another CGI handles authentication and ses-
sions. The lack of a resident process forced the CGIs to
continuously store and read data from the database. Some
customers tried to use Python, however this rendered a poor
performance. In addition to this, porting Python on some
machines (ie SH-2) is not a trivial task.

The solution to this tradeoff between flexibility and perfor-
mance, was found in the Klio web server, a component of
the open source Klio project7, a set of tools written in Gam-
bit Scheme. The idea of replacing the web server occured
after extended use of a simple Scheme web server for test
and debug. The web server was a slightly modified version
of the one present in Gambit distribution.

The Klio web server comes from completing the implementa-
tion, by adding missing features to make it compliant with
version 1.1 of the HTTP protocol such as persistent con-
nection, caching, chunked data. It also adds some common
features like plain authentication, session management, and
CGI support. It does not have a solid API for building ap-
plication yet: the user has to write a dispatcher function
in order to handle requests. For the developement we are
describing here, the dispatching was done by a hash table.

7http://mbenelli.github.com/klio

(page "Allarms" db
(dbtable alarmTable
(sql
(select description tag status block mail sms)
(from alarmlist)
(orderby status))
("Description"
"Tag"
("Status"
("Y" "led_red.png") ("N" "led_grey.png"))
("Blocking"
("Y" "tick_16.png") ("N" "void_16.png"))
("Mail"
("Y" "led_red.png") ("N" "led_grey.png"))
("Sms"
("Y" "led_red.png") ("N" "led_grey.png")))))

(page "Monitoring" poll
(box monitor base
(vbox
(channel "Temperature" T001 T002 "\u00b0C")
(channel "Humidity" T005 T006 "%")
(hbox
(label "Running") (led T010_0)
(label "Auto") (led T011_2 yellow)
(label "Alarm") (led T012_7 red)))

(toolbar
(btn0 "home.png" "index.html")
(btn1 "edit.png" "settings.html")
(btn6 "reset.png" (js (blink "T100_1")))
(btn3 "compressor.png" "pressure.html")
(btn4 "manometer.png" "manometer.html")
(btn5 "leds.png" "leds-read.html"))))

Figure 3: Example of DSL.

Some utilities that simplify the retrieval of GET and POST
data and format the response have been written. While
the Klio Web Server supports continuation-based interac-
tion[5], they have not been (yet) used due to the heavy use
of AJAX communication between client and server. On the
other hand, first-class continuations have helped interaction
on some acquisition systems, that use exclusively unix sig-
nal for interprocess communications. The signal-based In-
terProcess Communication of this system presented some
limits, and a better solution has been developed (described
at end of this section), but continuations have made possible
to have a working system in a short time, and the result was
more solid and efficient than expected.

In Gambit’s compilation model, the whole application can
be compiled in a single executable file and run on platforms
that do not support dynamic loading of libraries. On the
other hand, the possibility of mixing compiled and inter-
preted code proved useful for rapid prototyping and testing.
The interaction between a multithreaded Scheme code with
a C library (sqlite), has also worked well, using the sqlite
bindings provided by Klio tools, based on a functional in-
terface[4]. Using FFI in Gambit is very straightforward,
Figure 4 shows an example in giving Scheme access to a
C function. It is also possible to build idiomatic interfaces
without the need of separate C source files of glue code; for
example, the function %sqlite-open in Figure 4 does not
need a sqlite3 pointer as argument.

With these building blocks, the interface to sqlite consists

(define sqlite3-open
(c-lambda (char* sqlite3**) int "sqlite3_open"))

(define %sqlite3-open
(c-lambda (char-string) sqlite3*

#<<C-END
sqlite3* db;
int res = sqlite3_open(___arg1, &db);
___result_voidstar = db;

C-END
))

(define (open name)
(let ((db (%sqlite3-open name)))
(if (zero? (sqlite3-errcode db))

db
(raise (sqlite3-errmsg db)))))

Figure 4: FFI examples

of a single function that initializes the database and returns
a handler function, which works as a left-fold iterator, an
example is shown in Figure 5

(fold/query

(lambda (seed . cols)

(values #t (append cols seed)))

’()

(sql

(select name value)

(from measures)))

Figure 5: Usage of sqlite bindings.

The old C CGI continued to work, thanks to Gambit pro-
cess ports, so the new interface was tested and benchmarked
against the old one. This showed better performance and re-
liability.

The biggest remaining problem was still the poor interpro-
cess communication between the web application and the
acquisition unit, based entirely on signals and data sharing
via a database. To overcome this weakness, a new acquisi-
tion system was written in Scheme and integrated with the
web application, through the implementation of standard
binary protocols like /emphmodbus and /emphfetchwrite of
widespread use in PLC communication. This new system
has already proved itself much faster and reliable than the
previous one in some benchmarks and stress tests, but it has
not been used yet in a production environment.

6. CONCLUSIONS AND FUTURE WORKS
This experience has confirmed the qualities of Lisp in cre-
ating source to source compilers and Domain Specific Lan-
guages. It is both more powerful and easier to use than
other transformation languages like XSLT. Furthermore, it
increases re-use of existing source code. The transformer
used for configuration shares a large codebase with DSLs
used in pages construction. The use of DSLs has many ad-
vantages over the usual techniques adopted in mainstream
web development, in finding a compromise between expres-
sive power and simplicity. Our DSLs gives users a simple set
of directives, whose documentation is tipically a short ref-
erence to their signatures. Nevertheless, letting the user to

add arbitrary elements from both the underlying language
(Scheme) and the target languages (HTML, CSS, and, par-
tially, JavaScript), they do not limit their expressiv power.
The only complaint raised by some user was the excessive
presence of parenthesis in syntax of languages. It would not
be too difficult to use an alternative syntax, maybe using
Gambit’s infix notation or some kind of indentation-based
syntax in the spirit of SRFI-49. The fact that customers
chose to not start this effort shows that the the problem has
not been perceived as a show-stopper.

The experience in developing the server-side of the system
was positive. In particular, Gambit Scheme has proved its
qualities of simplicity, performance and reliability: it was
ported without difficulties on uncommon processors, sur-
passing legacy C code in performance, and never showing
a problem in several month of continuous running, despite
the minimal quantity of test and debug that required. The
speed with which a large C code-base was ported to Scheme
was determinant in overcoming the initial scepticism in a
fringe language like Scheme.

There is room for improvement both in the DSLs and in the
web framework.

The DSLs still have some rough edges and they are oriented
on some specific kind of applications. Making them more
general would not be any easy task, because it would need
feedback from a large number of users.

However, there is some work in progress on Klio. Besides the
aforementioned work on acquisition, there is active develop-
ment in adding tools for data analisys, adding new features
(SSH, web sockets), and improving scalability on multicore
processors, by letting its components work on individual pro-
cesses.

7. REFERENCES
[1] W. Clinger. Proper tail recursion and space efficiency.

Proceedings of the 1998 ACM Conference on
Programming Languages Design and Implementation,
June 1998.

[2] O. Kiselyov. A better xml parsing through functional
programming. Fourth International Symposium on
Practical Aspects of Declative Languages (PADL ’02),
January 2002.

[3] M. Feeley. Gambit Scheme: Inside Out International
Lisp Conference 2010, October 2010.

[4] O. Kiselyov. Towards the best collection api (extended
abstract). Lightweight Languages 2003 (LL3) workshop,
November 2003.

[5] C. Queinnec. The influence of browsers on evaluators
or, continuation to program web servers. ICFP 2000 -
International Conference on Functional Programming,
September 2000.

